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UNCERTAINTY ANALYSIS FOR FLUID MECHANICS WITH APPLICATIONS

ROBERT W. WALTERS* AND LUC HUYSE t

Abstract. This paper reviews uncertainty analysis methods and their application to fundamental

problems in fluid dynamics. Probabilistic (Monte-Carlo, Moment methods, Polynomial Chaos) and non-

probabilistic methods (Interval Analysis, Propagation of error using sensitivity derivatives) are described

and implemented. Results are presented tbr a model convection equation with a source term, a model

non-linear convection-diffusion equation; supersonic flow over wedges, expansion corners, and an airfbil: and

two-dilnensional laminar boundary layer flow.

Key words, stochastic, probabilistic, uncertainty, error

Subject classification. Applied and Numerical Mathematics

1. Introduction and Motivation. In the past few years, there has been mnnerous papers appearing

in the Computational Fhfid Dynamics (CFD) literature addressing the subject of credible CFD simulations

(see [1], [2], [6], [7], [10], [21], [30], [33], [351, [36], [38], [39], [41], [42], [49]). In fact, the May 1998 issue of

the AIAA Journal devoted a special section on the topic. Among the key issues discussed in that section

were: Code Verification, Code Validation, Certification and Sources of Uncertainty. One of the primary

reasons for the increased interest in uncertainty management is its application in risk-based design methods.

The structures community and dynamics and controls discipline have a long history :in uncertainty analysis

whereas the computational fluid dynmnics community is a newcomer in this area due in part, to the relative

infancy of the discipline and in part to the large cost, of CFD simulations. However, with the increase in

computing power and software improvements over the past two decades, stochastic CFD is coming of age.

Consequently, the primary purpose of this paper is to serve as an introductory guide for engineers with an

interest in fluid dynamics applications of uncertainty analysis methods.

Befbre proceeding to review the basic methods, some discussion on nomenclature is warranted. In this

paper we adopt the AIAA definitions fbr error and uncertainty [3], namely:

DEFINITION 1.1. E'r'ro'r: A recognizable deficierzcy i77, a_zy phase o7" activity o.f" 'rn, odelirz9 a_zd si77zv, latioT_,

that is not due to lack o.f knowle@e.

DEFINITION 1.2. Uncertainty: A potential deficiency in any phase or activity of the modeling process

that is d'ue to lack of knowledge.

These definitions recognize the deterministic nature of error and the stochastic nature of uncertainty.

Uncertainty can be further categorized into aleatoric (or inherent uncertainty) and epistemic (or model)

uncertainty. Further categorizations are possible and discussed in [29]. This report focuses on methods

for describing and propagating parameter uncertainty in models. In a companion report [29], we describe

methods for dealing with model form and boundary condition uncertainty for the non-linear Burgers equation.
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TABLF 1.1

5'o,,.'rce of U',.cc'rt,.i',,.t' 0 a.',M E',r',,'," i',,. CFD Sim',d, ti,,_, ...... s',,.',,.'m.,'ri:_,d .fwm OIw.'rk,,.,,pf and B/,,tt,,.,",'. R,:f. /:¢5]

SollrCC

Physical Modeling

(Assumptions in the PDE)

Auxiliar'.v Physical ModeL_"

Boundary Conditions

Discretization & Solution

Examples

Inviscid Flow

Viscous Flow

Incompressible Flow

Chemically R,eacting Gas

Transitional/Turbuleltt Flow

Equation of State

Thermodynamic properties

"lTi'ansport properties

Chemical models, reactions, and rates

Turbulence model

\Vail, e.g. rougtmess

Open, e.g. far-field

Fret Surface

Geometry Representation

Truncation error- spatial and temporal

Iterative convergence - steady state

Iterative convergence - time dependent

Geometry Representation

Round-Off Error Finit,e- precision arithmetic

Programming &: User Error

In some instances in this report, we have used a more genera] definition of uncertaillty that. ilmludes error

where it is clear t.hat no ambiguity arises.

In the AIAA special issue; Oberkalnpf and Blottner [36] group sources of uncertainty and error arising

from the simulation of physical phenomena goverr_ed by PDE's into four broad categories:

1. Physical modeling

2. Discretization and solution errors

3. Computer round-off error

4. Programming errors

An examination of Table 1.1 shows that many sources of error and uncert.ainty arise in CFD simulations.

It is generally believed that discretization error, geometric uncertainty and turbulence model uncertainty are

the largest, sources of uncertainty in modern t_eynolds-Averaged Navier-Stokes simulations and collectively

account for much of the scatt.er observed between experimental and computational data [2]. Discret.ization

error has been studied extensively and a number of' techniques have been proposed t'or modeling this error

(see e.g. [40], [41], [43]). Grid adaptation schemes frequently use these models tbr improving the base

grid. The impact of geometric uncertainty has been st.udied 1:)3:Darmofal [13] tbr compressor blades ltsing

probabilistic methods. Although relatively little has been done tbr quantifying turbulence model uncertainty,

there has been some work in this area [8], [20]. More recently, Godfrey [19] used the continuous sensitivity

equation approach to rank the relative importance of the closme coefficients in three turbulence models:



theBaldwin-Lomaxalgebraicmodel,theSpalart-Alhnarasone-equationmodelandthe\¥ilcoxtwo-equation
k - co turbulence model.

With the present state of computational resources, some sources of error can be made negligible. For

example, for essentially all one- and two-dimensional steady, inviscid or laminar flows, a user typically has

sufficient hardware to drive the discretization error to very low levels, essentially zero, leaving model un-

certainty as the only significant source of uncertainty. Over time, this trend will continue and eventually

encompass a large class of three-dimensional sinmlations. However, without further research effort concen-

trated on uncertainty estimation and managernent, model uncertainty will likely remain relatively constant

over time since it is not a known error that can simply be reduced with additional computing power.

In the next section, we review methods that can be used in CFD simulations for dealing with error and

uncertainty. Next, a range of problems starting with some simple model problems and ending with laminar

boundary layer flow are presented.

2. Review of Uncertainty Analysis Methods. In this section, we briefly review deterministic and

probabilistic methods for uncertainty analysis. Two deterministic uncertainty analysis methods - 1) Interval

Analysis and 2) Propagation of error using sensitivity derivatives and three probabilistic methods 1) Monte

Carlo, 2) Moment methods, and 3) Polynomial Chaos are summarized below.

2.1. Interval Analysis. The basic idea in interval analysis is to perform operations on input intervals

that contain the set of all possible values of the input in such a way that the output interval consists of all

possible values of the result of the operations performed on the input. Consequently, interval results represent

maximal error bounds (i.e., worst case results). One of the most appealing things about Interval Analysis

(IA) is that it can be implemented in a systematic way on modern computing systems such that the details

of the interval operations are transparent to the user. Thus, one can take an existing simulation tool, such as

a CFD code, and immediately implement interval analysis provided that it is supported by the programming

environment. However, it should be pointed out that different expressions for computing an interval output

quantity can result in different interval widths even if the expressions are mathenmtically equivalent for

pointwise input. To demonstrate this, consider the following two expressions that are equivalent for point

values,

m 1
-- and g(:c) -- I "(2.1) f(:c) 1 + Z 1 +-

2C

Table 2.1 shows the results of performing interval analysis for these two functions for input intervals, at,

defined in terms of the interval midpoint value, T, and uncertainty, c, by

(2.2) z = ¥[1 - s, 1 + e].

Values in the table correspond to e = 1/10. Note that the interval width associated with the second relation,

9(z), is substantially smaller than the width found by evaluation of f(z). This shows that, although existing

software can take immediate advantage of interval analysis, siglfificant improvement in the size of the error

bounds may be possible by careful design and construction of the operations within the software. However,

this investment may not be prudent since probabilistic methods provide much more information than can

be obtained through interval analysis. This exmnple also illustrates one other point: the fact that different

interval results can be obtained is not related to the precision of the calculation. Here:. rational numbers were

used to carry out the operations exactly. Different interval output occurs because sel; theoretical operations

- union, intersection, complement are affected 1)3"the st,ructural .[bT'm of the operations.
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Moreover, interval arithlnetic inside iteration loops results in error growth each iteration without sortie

modification to the base algorithm (see Sect.ion 3). Since many fluid dynamics codes rely on iteration for the

solution process, this further detracts fl'om the use of this approach. In a probabilistic modeling, varying

degrees of correlation between random variables can readily be taken into account in the anahsis. The

practical examples of Section 5.2 and 6.2 will illustrate this point and indicate that, depending on the

value of the correlation, the uncertainty may be larger or smaller than in the case where all \-ariables are

independent. Since interval analysis is a deterministic rnethod, it cannot take advantage of this informatioll

and nlust necessarily compute the widest bounds.

2.2. Propagation of Error using Sensitivity Derivatives. Error propagat.ion using sensitivity

derivatives has been in use for man 5, years (see e.g• Dahlquist and Bjorck [9]) If ,, = t,.({, c ) where c• , .... %`,, %.i

is the i t_' indeI:)endent variable with error A_i associated with it. then a deterlninistic approximation to the

error, A'u, is given by

I

(2.3) A_, _ _ A_!,i2 .
L¢= 1 0 %.i i

A computat.ional fluid dynamics example of' this technique is presented in the work of Turgeon et. al., [11], in

which the laminar flow of corn syrup was analyzed subject to uncertainty in the viscosity model, the thermal

conductivity model, the geometry, and t.he boundary conditions. In their work, they used the continuous

sensitivity ......equation method (see Section 4) to evahmte the sensitivity derivatives, eTZ,.,°"in Eq.(2.3). This

results in an error estimate, At,, which in their work was shown to bound the experimental data. \,_,_ wish

to emphasize that this approach is based on the assumption that a particular input interval (for example;

one of their inputs was an experimentally measured temperature, T 4-2(_), contains the e'nti're uncertainty

interval due to this variable. We will contrast this with a probabilistic framework in Section 2.4.

2.3. Monte Carlo. Although there are many different applications of Monte Carlo simulation, both

deterministic and probabilistic, the tbcus in this report, is on probabilistic sinmlation methods. A briefly

history of the method is given by Hammersley and Handsco:mb in [241 and summarized here. Arguably;

the development of the method and name. Monte Carlo, is considered to have its start around 1944 when

yon Neumann and Ulam performed direct simulation of neutron transport problems, primarily as a tool for

atonfic bomb research• Shortly after the end of \Vorld \_;ar II, Fermi, Ulam, ,,;on Neumann and others began

applying Monte Carlo methods to deternfinist.ic woblems. By 1948, Monte Carlo estiinates of the eigeiwalues

of the SchrOdinger equation had been obtained. Sometime thereafter, this work came to the attention of Dr.

Stephen Brush at the Livermore Laboratory who subsequently unearthed a 1901 paper t)3 Lord Kelvin [31]

in which remarkably modern Monte Carlo techniques appear in connection with the Boltzmann equation.
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Apparently, the methods were obvious to Lord Kelvin and consequently his focus was on the results. Even

prior to this application, there are isolated accounts of the method [23].

Here we demonstrate one of the simplest of all Monte Carlo methods, referred to as crude (or basic)

Monte Carlo. In this approach, the basic procedure is:

1. sample input random variable(s) from their known or assumed (.joint-) probability density function

2. compute deterministic output for each sampled input value(s)

3. determine statistics of the output distribution, e.g., mean, variance, skewness, ...

The statistics of a distribution (mean, variance, skewness, kurtosis, ...) can be determined from the

definition of the expected value of a function of a random variable, _, say g((), name,15_

/c c c C(2.4) =

where p(_) is the probability density function of the distribution that describes some event or process and

the integration is over the support of the PDF. The mean of the probability distribution (also referred to as

the first moment about the origin) is

/(2.5) = =

The r th moment about the mean is given by

'(_- ,,) p(_.)d_.(2.6) IE[(_-_)"] = -E," c

The variance, skewness, and kurtosis are related to the 2"d, 3_d, and 4th moments about the mean. In

some cases, the integrals can be evaluated analytically, in others, the integrals are replaced by discrete sums.

In the application problems to follow, we sampled fi'om a Normal (Gaussian) distribution with a mean #

and standard deviation c_. The probability density function (PDF) of the Normal distribution, PN(_), also

denoted N[#, c_], is given by:

C 2o.2

(2.7) pN( ) -

Two typical samples are shown in Figure 2.1 in which the Gaussian shape of the underlying PDF is evident.

Frequently, it is convenient to use the standard normal variable. N[0, 1], i.e., a Gaussian with a mean of 0

and a variance of 1. it,s definition follows directly fi'om Eq. (2.7).



Tile Monte Carlo method has the property that it. converges to the exact stochastic solution as the

number of samples, n --+ oc. However, convergence of the mean error estilnate is relatively slow since tile

standard deviation of the mean scales inversely with the square root, of the t,he rmmber of samples:

(7

(2.8) c7,,= _,

Subst, antial ef[icienc3; improvement, s over the basic scheme, known as variance reduction techniques: are

reported in the literature (see e.g. [22]: [24]. [25]. [32]). The two primary nlechanisms for improving the

basic procedure are importance sampling and correlation methods.

2.4. Moment Methods. A number of" applications using moment methods have appeared in the litera-

ture involving CFD simulations (see [26]: [27], [28]: [37]. [44]). Moment method approximations are obtained

fl'om truncated Taylor series expansions about the expected value of the input parameter. For example.

consider a function, u(_). expanded about the mean value, 4. The first-order accurate approximation for the

expected value of u. is:

(2.9) _Fo[_,(_)] = _,(_).

N-ot.e that the first-order first moment (FOFM) apl)roximation is nothing more than the t)ointwise (or deter-

ministic) value evaluated at the mean of t.he input. Frequently, this is referred to as the deterministic solution.

The second-order first, moment (S()F_[) requires t.he computation of the second (sensitivit.3') derivative, t.o

improve the estimat, e of the mean.

1 O2'u(2.10) Es'o['u.(_)] = ",.(_) + __Var(._) 0--7 .

For some problems we investigated, the iml)rovement due to the higher order correction terrn was significant

whereas tbr other problems it was not. Estimates of the variance are obtained similarly. The first order

approximation to the variance of 'u is:

9

( )-c)_ "v_r(_).
(2.11) VarFo[u(#)] = 0--_ 7

The second order estimate of" the variance ofu is:

2 )'2
(2.12) Varso[_,,(_)] = a_,, Wr(_) + -- V_r(_)

• . _ _ O_2&- _

For discussion purposes, we shall refer to these first.- and second-order approximations to the second moment

as FOSM: SOSM methods respectively. E.xtension to mult.iple random variables is straightfbrward through
c

Taylor series expansions of functions involving nmltiple variables. For example, if i_,= "_z(<{l, s2). the first-order

moment approximat, ions to the expected value and variance respectively are

c c(2.is) n; ro [,,(_ ,.._,)]= _(_. __).

. ( )( )(914) VarFo[U(_lc-. •s.,)] = _ )__ ere, W -- rr_ + O -- Covar(<l _'))- &.j _- #)G g

where the covariance (a measure to the extent that sc] and _2cvary., .jointly)., between the random variables _1

and _2 can be defined in terms of expected values as

c c c(2.15) Covar((,, <.-2) IF, [,,_,2 - IE((,)E(_2)] •



TABLE 2.2

Q,.,a.'n,t.i,h_._ o.f th, e Sta,_ut.,'rd No'rm..l Dist'ri, bu, tion.

c_ (%) Quantile(_)

67.000 0.97

90.000 1.64

95.000 1.96

99.000 2.58

99.900 3.29

99.990

99.999

3.89

4.42

Frequently, it is useful to define and use the correlation coefficient,

__ Covar(_l, _2)
C [-1, 1].

P_ ,_ -- cry, cr_

The extension of Eq.(2.14) to n independent random variables with standard deviations (cry,, ..., cry,, ) results

in the standard error estinmte for cr_....

I

(2.16) or,, = _., .
ki=l

Note the similarity of this FOSM estimate assuming uncorrelated data with the propagation of error formula,

Eq.(2.3). In a probabilistic approach, one commonly uses an input uncertainty with a specified confidence

interval, e.g. T ± 1.96c, T, a 95% mean confidence interval. Recall that a confidence interval gives a bound

within which a parmneter is expected to lie with a certain probability. It is common practice to distinguish

between single prediction confidence intervals in which a randomly- drawn, individual (i.e., single) smnple is

expected to lie with a pre-specified probability and mean confidence intervals in which the population mean

is expected to be contained, again with a prescribed probability. Confidence intervals can be obtained fl'om

knowledge of the quantiles of tim distribution. A quantile is a measure of the location of a point such that a

specified fraction of the data lies to its left,. For example, the median is the quantile measuring the location

of the point such that 50% of the data lie to its left. Quantiles of the standard normal distribution for various

confidence intervals are shown in Table 2.2. The important difference between the interval estimate Eq. (2.;3)

used by Turgeon and the probabilistic approach, Eq.(2.16), is the interpretation of the input uncertainty

and hence t,he scale .fi_ctor for the sensitivity derivatives. Note that -t-3 standard deviations contains more

than 99% of the interval and -+-4 standard deviations contains 99.99% of the interval. If experimental data is

available, then estimates of the input, standard deviations, cr_, can be obtained that will be less (and possibly

substantially less) than the width of the uncertainty interval, A(_,, used in Eq.(2.3). This distinction is further

highlighted in Section 4 for a non-linear convection-diffusion problem. Certainly, repeated experimental

measurements will give rise to a probability density function that describes the statistics of the distribution

which can then be used to generate accurate and reliable probabilistic output for multi-disciplinary risk-based

design activities.

2.5. Polynomial Chaos. Recently, several papers have appeared in the literature investigating spectral

representations of uncertainty (see [14], [15], [16], [17], [47], [48]). An important concept of this approach is



thedecompositionofarandomfunction(o1"variable)int,oseparabledeterministicandstochast,iccomponents.
Specifically.foravelocityfieldwith rarlclomfluctuations,wewrite.

P

i=0

where tLi.(;r) is tile deterministic part and g2i(_) is the random basis function corresl)onding to the i th mode.

Effectively, _i(:c) is the amplitude of the i Lh fluctuation. The discrete sum is taken over the number of

modes represented. P - (n,+_,)! which is a function of the order of the polynomial chaos, l)- and the number

of random dimensions..n. Here, we use nmlt.i-dilnensional Hermite polynomial basis functions to span the

n-dimensional random space that_ we wish to 1"el)resent. akhough the use of many other basis functions are

possible. A convenient fbrm of the Hermite polynomials is given by

e"'_ (-1)" --e :(2.18) H,,({i,, ..-._,i,,) = e_, 0" --' e"e
• . . 0<,i,,8_,i ' '- c

where ( = (_,:, : ..., s,i,, ) is the n-dimensional random variable vector. As discussed in [47], there is a one-to-one

H c ccorrespondence between the functions ,_(si ) and k_i(_i). The Hernfite polynomials torln a complete
1 t .... _ ,_,, . ,_

orthogonal set. of basis functions in t,he random space. In terms of the inner product.,

(2.19) (fc(_,)f_/(s),c\= .f (s).q (s) I"1';(_)d_'c c
, C'_'

with the weight functio11 I¥(_) taking t.he form of an 'n.-dimensional Gaussian distribut.ion with unit variance

defined 1)3;

1 __, _,_
(2.20) l,I,"(_) - _e -'" "

Vs(.2rr) ''

t,he inner product, of the basis functions is zero with respect to each other, i.e..

(2.21) (q2i_9.i) = < _9) (q-,"ij.

where 6Li is t.he I(ronecker delta funct.ion. Once t.he modes, v,a., of the solution are known, then statistics

of' t.he distribution can be readily evaluat, ed. The mean of the random solution is given by IEpc,['u] = uo.

The _: = 1 ..... 'n, rhodes are the Gaussian estimates of the variance, all higher modes provide non-Gaussian

int.eractions. The variance of" the distribution is given 1)5

P

(2.2_o) = E
i.=l

3. Linear Convection with a Source Term. The prilnary focus of' this example is on the apl)lication

of int.erval analysis for both time-dependent and steady-state calculations. \Ve consider the scalar wave

equation with a source term designed to mimic chemically-react.ing flow problems in which T plays the role

of a chemical time scale• 7- + l//cf, where l_:f is the fbrward reaction rat, e. The governing equation is

(3.1) /)t _ o &,: 7,

in which o is the com;ective wave speed (taken t.o be o = 1 tor all cases considered). Near chemical

equilibrium, reaction rates are essent.ially inst.antaneous, i.e., l,:f + .:_ and 7- _ 0. restflt.ing in disparate

time scales that cause numerical ::stiffness". This problem has been studied 1)y Godfrey [18] in connect.ion
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with implicit preconditioning algorithms. Here, we consider uncertainty in the chemical time scale, 7, due

t,o uncertainty in measured reaction rates. The exact solution to this equation is

:': r)e-xl_.(3._9.) _(., t): V(t- -,
O,

In order to complete the definition of this problem, the initial and boundary cond.ition, respectively, are

taken to be

(3.3) u(x, 0) = 1 :c C [0, 1],

(3.4) _L(0, t) = 1 V t > 0.

With these conditions, the function, 9, is

x r)=( 1. t> :±
(3.5) 9(t - a" e -(t-'_/_)/_ 0 < t < _-:

• -- o"

Taking the chemical time scale, r = 0.9, and the wave speed, a = 1, a graph of the exact deterministic

time-dependent solution from t = 0 to t = 1 is shown in Figure 3.1. For the uncertainty analysis, we will

examine the time-dependent behavior at z = 1 (seen along the front side) and the steady state solution (seen

along the right edge).

3.1. Interval Analysis. First-order upwind differences were used to approximate the spatial derivative

in Eq. (3.1). The outflow boundary condition (:c = 1) was prescribed by approximating &' = 0 to first- _ z--1

order accuracy. Three time integration methods were implemented: Euler explicit, Euler implicit, and 4-

stage Runge-Kutta. In terms of the steady-state residual. R(u) - a°" ,u, T/z + 7, the Euler explicit method for

ut + R(u) = 0 can be written as:

(3.6) ,L(n+_) = 'tt ('_) - AtR(_t ('')) (Euler Explicit-I).

For a deterministic problem, that is all there is to this method (referred to hereafter as Euler Explicit - 1).

However, consider the case in which there is uncertainty in the input chemical time scale, r. Let r be defined

to be the interval

(3.7) r = _[1 - c. 1 + c],



where _ is the midpoint of the interval with uncertainty a. The residual in Eq.(3.6) is now arl interval rather

than a point value at any x location. Moreover, v.(') is also an interval after the first iteration as a consequence

of interval operations during the previous time step even if the initial condition has no uncertainty. As seen

in Figure 3.2. this method results in exponential g_'owth of the intervals during a time accurate simulation.

One can consider alternatives, namely.

(3.8) 2Z('n-l) = ZL('') -- AtR(-g ('')) (Euler Explicit-2)

(3.9) ,l/(,zq-1) = 77(,,) _ AtR(u(',,)) (Euler Explicit-3)

(13.10) v,(''+_) = 77('') - AtR(_/'_)) (Euler Explicit-4).

where E is the midpoint of the interval. Methods 2 and 4 evaluate the residual with the midpoint of' the

interval from t.he previous time step. However, R('E ('')) is still an interval since the chenfical time scale

is uncertain. Since Method 4 also uses the midpoint value in the time derivative, it gives onh" the local

uncertaint.y at. each step due strictly to the uncertainty in r. For this problem, this results in very small

interval estimates in which the upper and lower interval bounds visually appear t.o be on top of one another.

Method 2 uses the interval "u/") in the time derivative and hence accounts for cumulative growth. In fact; at

any point in time, the cumulative (integrated) stun to time t of the uncertainty from Method 4 is equivalent

to the Method 2 uncertainty at time t. Methods 1 and 3 both use the interval "u.(") to evah.mte the residual

and hence allow fbr teml)oral growt, h of uncertairlty. The magnitude of the outpllt intervals will grow without.

bound in Method 1 and yet with Method 3 converge to steady-state values (provided a steady-state exists).

The results of these four methods with 81 equally-spaced grid points along the ._,- azi,s and using a time
a,_l, 1

step At corresponding to I = _:,: = 5, are shown in Figure 3.:2.

It is common practice to monitor the convergence of a solution process in CFD sirmflations in terms of

a vector norm of the steady-state residual, R('_ (')). In this case. however, _(_l. (''/) is an interval not suitable

for obtaining point-wise vector norm values hence we monitored the L2 -'norm of R(77(")). The residual

histories of the tour methods are shown in Figure 3.3. For Method 1. the interval size rapidly reaches the

maximum maclfine representation, on this COlnputer {-1.79769 × 10 a°s, 1.79769 × 103°s } which results in a

midpoillt residual of zero although t.he solution is completely useless. The other three methods smoothly

converge to the steady-state in t < 2 yet the exact steady-state is achieved at. t = 1. However, in all cases.

the residuals at t = 1 have been reduced more than three orders of magnitude and the values at tiffs time

are close to their steady-state values.

One of the most common 4-stage Runge-I<utta methods (and the one implemented) can be writ.ten as

(3.11)

72 = R("a('') + 7_/2).

Y3 - R(u<'') + 72/2) •

74 = R,(u (") + 7:3).

,'__ku('_) = _ ....-- ("q-,(71 ÷ 272 -- z, i3 -F 74).

u(,,+l) = u(,,) + A_t('').

Again, we face the same issues as before, namely the residual evahmt.ion, R('u) vs R(g). and the update step,

"u,('") vs _('"). Numerical experiments confirm that the use of /_,(7i) fbr the residual evaluations and u,('') in

the update st.ep yields the most useflfl interval analysis results.

For many CFD simulations, implicit time integration met.hods are preferred. For demonstration pur-

1(I
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poses, we implemented the Euler implicit time integration scheme which in delta fbrn_ can be written as

1 OR) ('')(3.12) A--t, ÷ &,--

This results in the tri-diagona] set of equations

(3.]3)

bl c1

o.2 b2 c2

0 (In-1 bn 1 C__l

(in /)n

/N?I- 1

A u2

/2(lll)

R,('.,e)

where tbr the general case of wave speeds of either sign,

o j ---- c,+lal2,.,,._. )

1 , 1 , I C'l / .j == 2 ..... "I'1 -- I.

(3.14) bo = _- _- , _:_.
o.-I_,1

C.j = 2",:r

At. the inflow boundary: cl = R.('ul) = 0 and bl = 1 and at. the outflow, o,,, = -1, b,,. = 1:/2(u,,) = 0.

For positive wave speeds, the above matrix reduces to a lower hi-diagonal matrix which cart be solved

by a fbrward substitution pass. Likewise, for negative wave speeds, the nmtrix (with appropriate change in

boundary conditions) reduces to an upper hi-diagonal matrix which can be solved 193,a backward substitution

step.

Using the interval midpoint for residual evaluations, a comparisor,_ of' the time history from the Euler

explicit, Euler implicit, and 4-st.age Runge-t(utta methods at. a: 1 is shown in Figure 3.4. Although difficuh

to see. the Euler implicit and Euler explicit, methods yield identical results in terms of interval size. The

Runge-I(utta niet.hod results in larger intervals due to the increased number of residual evahmtions and

intermediate update steps in the nmlti-step method.

If" one is only interested in the steady-state solution, other options become available, prirnarily through

the use of algorithms that are stable for large tirne steps and in some cases, space-marching methods. In this

case• both are applicable. For example, the Euler implicit met, hod, Eq. (3.12) can be used with At -+ >c.

Since the governing equation is linear, the steady solution is obtained in one step 1)3 solving the resulting

linear problem which we refer to as a Time March method. The other alternative is to implement a Space

March method by eliminating the time derivative in Eq. (3.1), i.e.,

(3.1.5) o....
()d' T

Discretizing this equation with first-order upwind diffhrences (t, aking o. > O) yields

_u.j_ ]
(3.16) 11.;-

1 + ,,x._:
(1 T

where u.j - _L(3A:r). The results of" the Time March versus Space March approaches can be seen in Figure

3.5 where the advantage of' space nmrching is evident.
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3.2. Monte Carlo m_d hloment Method. The Monte Carlo and First-Order moment methods were

also implemented. For these probabilistic methods, we took die chemical time scale, r. to be a Gatlssian

random variable with a mean, 7 = 0.2 and a 5% coefficient of' variation (CoV). Figure 3.6 shows histograms

fl'om 1000 Monte Carlo simulations where it. can be seen that t.he output is clearly non-Gaussian.

Time-dependent Monte Carlo calculations are compared at three :z: locations in Figure 3.7. For this

problem, the solution at. any m decays from the initial condition of "u, = 1 until its steady-state value is

reached at, t = ± The 95% mean confidence intervals are roughh' 30 times narrower and are not shown
o " '

here for clarity. Steady-state results from the FO moment n_.ethod are compared with 1000 kionte Cmlo

simulations in Figure 3.8. The sensitivity derivative required tO implement the FO moment method is

_u. 37 -:r/o.r

(3.17) Or - (,r 2 e

The 95% confictence intervals from the FOSM are comparable to the single prediction 95c/c confidence intervals

fl'om _[onte Carlo. The distribution of standard deviation and coefficient of variation are in good overall

agreement.
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4. Non-linear Burgers Equation. Computational fluid dynamicists frequently study simplified prob-

lems designed to mimic certain featm'es of a more complicated situation but at lower cost and effort. Many

such problems exist but one that is particularly useful is the model non-linear convection-diffusion problem

proposed by Rakich and referred to as the general Burgers equation [4]. Based on specific choices of para-

meters in the equation, one can obtain linear or non-linear behavior. We consider the steady form of this

equation, which in conservation law form is

(4.1) L?.f c9 (c9_)Oz Ox - = o

1 _ u) for which thewhere the flux, f, is a non-linear function of tt. We took the specific case of f = "u (7

exact stationary solution is given by

(4.2) "u(:c) = 7 1 + tanh V "

For the uncertainty analysis, we took the input viscosity to be stochastic, hence the sensitivity derivative.s,

O"u/Off', are important in the analysis. The exact solution, u(z), and its first three derivatives with respect

to viscosity, tL, are shown in Figure (4.1). The solution rises monotonically from 0 at -oc to 1 at +oc. Note

that the higher derivatives are increasingly oscillatory. One practical consequence of this that we found was

the need for high-order methods or finer grids to numerically estimate those derivatives.

For all numerical computations, we limited the computational domain to z c [-3, 3]. Truncating infinite

domains in CFD is commonplace, external flow over airfoils, wings, and aircraft, configurations are a few

examples. However, there are consequences of this with regard to boundary condition treatment of stochastic

variables. A more complete discussion of this topic and a random field analysis of this problem can be tbund

in [29].
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4.1. Deterministic Problem. Newton's method was used to solve the non-linear problem, Eq.(4.l).

This results in the linearized system of' equations arm the update step

(4.3) _ A_z('') - -R(u(')).

_(,,,+1) = _z(.) + A.u(,,).

Second-order centered differences were used to apl:_roximate the spatial derivatives. Dirichlet boundary

conditions were specified at the endpoints. :z: = 4-3. Dora the exact deterministic solution. This results in a

tri-diagonal set. of equations to soh;e fbr each Newton iteration (fbr details, see [29])

(4.4)

where

(4._,)

C "2

0 Ot t -- 1 _)_ _ -- 1 C,u -- 1

(1,, n b n

i ll 1

A'u,2

(l/2--ui-i) ....ZL_

O.j -- 2,",:_: -- Aa:-'

by .'XT2

(1/2-"i-- _) i:
Cj -- '2/k._ _a:-' "

n('_l)

n(-..,,_ :l)

n0,.)

bl = b,, = 1, and c_1 = c_ = o,, = c,, = R(_I_) = R(u.,,) = 0.

Numerical solutions were generated on a sequence of uni:[ormly-spaced grids for which the mnnber of

grid points and mesh spacing is given in Table 4.1. The numerical solution for the dependent variable; "4L,on

three different grids is shown in the left of Figure 4.2. A typical convergence history, corresponding to the

129 mesh point solution is on the right.. Indepertdem of the level of' grid refinement, the residual converged

to machine epsilon in the same number of' iterations (4-1).

Several approaches have been proposed fbr establishing truncation error estimates. Probably the most

common approach is based on Richardsol_ extrapolation although other estimates, such as mult-grid estimates
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can also be used. Roache [40] has used Richardson extrapolation with modifications to obtain an error

estimator and this technique will be used here for demonstration purposes. The discretization error estiinates

that we require can be obtained by series expansions. The result is:

-- _ ar?'l,d E2 --(4.6) E1 - 1 - _'_ 1 -'r'P

where

El, E2 --=error estimates on the fine grid ':1" and coarse grid "2", respectively

c -- tL2 -_,1; the pointwise difference between successive solutions
]z9

r = /-771> 1; the ratio of mesh spacing

p = the order of accuracy of the numerical method.

The Grid Convergence Index (GCI) used by R,oache as a discretization error estimat, or is defined by

(4.7) GCI _ & IE, I o_. co! _ .F_levi

where F_ is a factor-of-safety with a recommended value of F_ = 1.2,5 (which was used here) tbr high fidelity

numerical experiments. In all cases examined, the GCI estimate bounded the true discretization error at

every point in the domain. Note that error estimates are available on all grid levels. Roy [43] has extended

this analysis to mixed-order schemes and further refinements are possible using infor:mation from additional

grids.

Measures of accuracy and discretization error are shown in Figure 4.3. The plot on the left shows

L.2 - _zorm of the actual error. The slope of the line is well known to be a measure of the order of accuracy

of the discretization. Table 4.1 shows the computed values of the slope of each line segment. The exact

distribution of the discretization error is shown on the right of Figure 4.3 along with the Grid Convergence

Index (GCI) estimate.
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TABLE 4.1

S'wm,'m,o,'r!/ of grid co'n'ccrgc'H,c_ pwrwmcl(:r._ a,'n,d rr:._Ml,._ for Bv,'tgc'r',_" cqu_l,tio'n.

Number of Mesh L2-norm Slope of
Grid Level

Grid Points Spacing, Ax of Error Segment

1 9 0.75 0.01383131 -

2 17 0.375 0.00350755 1.97940

3 33 0.1875 0.00095693 1.87398

4 65 0.09375 0.00023901 2.00129

5 129 0.046875 0.00006023 1.98851

6 257 0.0234375 0.00001505 2.00001

7 513 0.0117188 0.00000376 2.00000

4.2. Stochastic Problem.

4.2.1. Exact Stochastic Solution. The viscosity, #. was taken to be a Gaussian randoln variable.

- _ = 10_/_. The exact stochasticP._I(#), with a mean t_ = 0.25 and a coefficient of variation. CoV(#) -- _

solution can be expressed in terms of its probability density function, which is given b_'

(4.8) p_.,(_(a:))=l_'u(:c:t_.)-' p,,: (#).

Justification for this expression is rather intuitive since it. is simply a statement that the probabilits' ofa

random variable following wittfin a specified range is constant under a transfbrmation of variables. Using

Eq.(4.1) and the definition of' the Gaussian PDF. this expression can be analytically evaluated to obtain

(., .....,,_'i., _,,,,+7) _

e 2"_ (u--l)ut.anl_ t(l--2u)'-'

(4.9) t)L'_("(:_')) = s_

A plot of' this flmction is shown in Figure 4.4 followed by the enlarged view in Figure 4.5 with more resohltion

of' the PDF. It can be seen that Pu varies markedly with :r. Near the boundaries, the PDF is highly skewed

art([ peaked but approaches a Gaussian as :r --, 4-1 flom the nearest boundary. At .r = 0, the solution is

deterrninistic, i.e., the variance is zero, which all random variable models predict. As a side note, random

field models may produce quite different results, particularly near the centerline [29].

4.2.2. Interval Analysis. \¥e applied interval analysis to both the exact solution and the CFD-

oriented numerical method described previously The input interval object was the viscosity, which was

defined to be

(4.10) /_. = F[1 - c. 1 + ¢ii.

Numerical results obtained by evaluating the exact deterrninistic solution, Eq. (4.2) for an input value,

c = 0.1, are shown in Figure 4.6. The error bars indicate the width of the output interval. One of the

most attractive things about interval analysis is that it is very simple to implement. However, as seen in tile

interval analysis results from the nmnerical method in which both the Jacobian matrix and residual were

evaluated with tile interval midpoint values, Figure 4.7, the uncertainty estimates are unacceptably large.

The bounds became so large for the bottom two cases that a (-hange in scale was required to keep the error

bars within the display area.



X 0

Pdfu /

0.2 0.4 0.6 0.8

U

Pdfu o

1

0.9

o,8

o.7

0.6

0.5

0.4

0.3

0,2

0.1

0
-3

Interval Analysis of ._"_"--

_ r I ' ' I I ' , I _ ' I
-2 -1 0 1 2 3

Z



1 -

0.9

0.8

0.7

0.6

A
x 0.5

0.4

0.3

0.2

0.1

0 '

1

_: = 0.005 _ _ -- o._
I 0.8

0,7

0.6

-_ 0.5

0.4

0.3

0.2

0.1

, I I 0
-2 0 2

X

F

L_ 1_ . i i . i
-2 0 2

X

1.1

1

0.9

0.8

0.7

0.6

_-i 0.5

0.4

0..3

0.2

0.1

0

-0.1

3

- _ = 0.02 _ = 0.10

2

i
I . , , ; : T ' I ,

-2 2 -2 20 0

x x

F'K;. 4.T. /.nlcm:_ll _lll_l./:q.,z.._ zY,._'u.ll._ .rTO.m /lu .ll.u,,mc./-,_ua/ ._.oh#io.n o.f /3H'qH'I'._ cq_m.tion.. -'Vnh' lb.< HmnflC "Zn ._c_11_ on lhx

hollom lm_ plol.,_.

4.2.3. Moment Methods. The moment methods require the sensitivity derivatives with respect to

the input random variable. In this example_ we colnputed numerical aI)proximations from the contimlous

sensitivity equat, ion (CSE) approach and the discrete adjoint (DA) method. A brief description of these two

techniques tbllows:

Co'n, tiT_m_t.s Se't_.sitivit_q Eq'_m, tioT_ (C'5'E). The conservat.ion law form of' the Burgers equat, ion (4.1) can

1-)ere-written in quasi-linear tbrrn as

1

(4.11) Au,:,:= H_-:,::,: where ,\ = -_ - u,.

The continuous sensitivity equation is derived by differentiating Eq. (4.11) with respect to /.L noting that

,_z = "t_(:_';if). Defining s, _= _)_L/_)tl, and carrying out. the different iat.ion yields a linear different, ial equation

for the sensitivity derivat.ive, namely,

(4.12) (A.s,_,):,. = t_(,s,,)_.:,: +.t,.:<:,..

Given a numerical solution of' the Burgers equation as input, one can use a variety of' munerical methods to

solve Eq. (4.12). \\;e used a spat, ial discretization consistent with the flow solution method (i.e.. a 2 ''t order

2()



accurate centered scheme) and Newton's method. Since the problem is linear, one Newton iteration ahvays

finds the solution to machine precision (_ 10-16). It is worth mentioning that the Jacobian matrix of the

CSE equation is identical to tile Jacobian matrix of the Burgers equation. This simplifies the coding of the

CSE since one merely has to change the right hand side in the original software.

Discrete Adjoint Method. The discrete adjoint method is commonly used in aerodynamic optimization

problems ([34]) in which a user defined cost function is minimized. The cost function, denoted F('u; ;,_) where

q_ represents the i th generic design variable, is augmented with a vector of Lagrange multipliers operating

on the discrete version of the governing equations, in this case Eq. (4.1), i.e.,

(4.13) F*= F(u; _i)+ ATR(_t; g_:).

This equation is next differentiated with respect to the design variable, or more generally, any generic variable

denoted _i. After some rearrangement, one obtains

(4.14) OF* (OF ATOR.)c)u AT(0R)

Since the vector of Lagrange multipliers is arbitrary, the first term in parentheses may be equated to zero to

yield a linear system of equations for A,

(4.15) -_u a- 0u

Once the vector of Lagrange nmltipliers is known, the sensitivity of the cost function with respect to ;i can

be evaluated from

(4.16) --cgF-AT(0R)-

This basic implementation is widely used in a design environment (see [34]) and precludes the need to

compute the flow sensitivities, i.e,. c)tL/_)q4,, directly. In this problem, we require those derivatives and they

can be readily obtained by defining the set of cost functions, F = {Fj _ w IJ = 1,. 2, ...n} where ))_is the

total number of grid points. Extending Eq. (4.16) to a system of functions and insert.ing the definition of F

yields

(4.17) -_u a = -I

where I is the identity matrix and A is a matrix consisting of a set of column vectors, Aj for each j. The

required sensitivity derivatives can now be found from Eq. (4.14), which upon substitution and rearrangement

reduces to

(4.18) c9_ =AT(OR)

Note that Eq. (4.17) can be solved efficiently for all right hand sides by LU decomposition. All sensitivity

derivatives can then be computed by the single matrLx-vector multiply indicated in Eq. (4.18).

Although it may not be readily apparent, both the CSE and the DA methods yield identicM results

provided both methods are fornmlated and implemented consistently. In practice, this generally does not

occur because of differences in coding, convergence level, etc. Here, however, the equations are always solved

to machine precision, the discretizations are consistent, and consequently, the sensitivity derivatives obtained
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1)3; both methods are identical. A plot of the first derivative with respect to viscosity by both n|ethods is

shown on the left of Figure 4.8 and compared with the exact, derivative. The right half of the figure shows

result, s for estimating the uncertaint.y assuming that 1) the input, uncertainty (:ontains 100% of' the error

(non-probabilistic - Eq. (2.3)) and 2) a probabilistic FOSM approximation assuming that the input error

represents three standard deviations (_ 99% of the samples). The advantage of knowledge atoo_t the input

data is clearly seen in the reduced uncertainty in the output.

A comparison of the absolute error in the mean (77 = 0.2,5) and relative error in the standard deviation

(COV(/.I.) _-- _ -- 10(_,) predicted t)y Monte Carlo and the first- and second-moment n_ethods are shown

in Figure 4.9. The distribution of the mean error from the first-order moment method closely follows the

second derivative distribution shown in Figure 4.1. Adding t.he second derivative (-orrection term to obtain

the second order moment estimate of the mean results in substantially less error. As can be seen on the

right, the relative error in estimating the standard deviation is approximately 6% and 2_, tor the F()S__I and

SOS_I estimates respectively at the boundaries. One thousand MC simulations results in roughly the same

maximurn error as the SOSM method at roughly 300 times the cost. Increasing the number of simulations

an order of magnit, ude reduced the error b3; approximatel3; three at, considerable additional cost.

4.2.4. Polynomial Chaos. Sul)stituting in l)oh-nomial chaos expansions t'or the dependent variable.

t_.. and the input random variable. #. into the residual. Eq.(4.1). and t,aking the inner product. {-. @_:} yiehls

an equation for the residual of the I,/_' mode.

(4.19) R_, -- 2 Orr i=0 j=0

P P O2,u.)

-- _ _ eij_:l'i 0:,: 2
i=0 j=0

where e,i.ia. - (_I_.i_.)vI_a.). \Ve iteratively solved this equation by the Euler explicit method but found that

the CPU time to achieve the machine zero steady-state solution was excessive relative to implicit methods.

Consequent.ly. Newton's method was iml)lemented by using the linearization of' the residual, which can be

'90
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shown to reduce to

10(4.20) ARt,. -_ Auz = 20x
i=o j=o _=o j=o

where (Szjis the Kronecker delta function. The boundary conditions were specified fl'om the exact stochastic

solution by matching moments of the distribution up to a user-specified order. The three bom_dary conditions

studied were obtained by matching

1. the mean (BC1)

2. the mean and variance (BC2)

3. the mean, variance, and skewness (BC3)

The first boundary condition, BC1, implies that the first mode, u0 is set to the mean of" the exact solution

and the remaining modes are set to zero on the 1)oundary. The second boundary condition sets u0 and ul

to the mean and variance of the exact solution, respectively, the remaining modes are set. to zero. Similarly.

BC3 sets u0 to the mean and solves a simple algebraic problem to find the values of Ul and _2 such that the

variance and skewness of the polynomial chaos distribution match the exact solution.

One advantage of Polynomial Chaos is that the output PDF's which depend on the order of the chaos

can be easily obtained. For a single random variable, the first-order chaos yields a Gaussian distribution

with mean u0 and standard deviation lUl I, i.e.,

e-(_ ....,,.,,):_/2,,i

(4.21) --

The higher-order modes account for non-Gaussian interactions and are reflected in the output PDF. For a

second-order chaos, the result is

(4.22) PPc._(u) =
V/2_- lu 2 + 4u2 (u - u0 + ,_)1

Further analytic representations for higher order chaoses are possible but lengthy.
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Numerous results were generated using Hermite polynomial chaoses of varying order with different

boundary condition treatment and on different, grids. Here we summarize these results. The first Ibm" modes

from an order 3 PC are shown in Figure 4.10. Recall that mode 0 represents the expected value (i.e., the

mean). Note the similarity of the shapes of the higher modes with the sensitivity derivatives of the exact

solution in Figure 4.1. The only discrepancy that can be seen is between the third mode and the third

derivative which is due to boundary condition treatment for this mode and will be discussed subsequently.

Figure 4.11 shows absolute errors in the mean and relative errors in the standard deviation using order

1 and 2 PC on 129 and 513 point grids. Refining the grid for the first-order chaos gives a slightly larger

maximum error than the coarser grid. Computations show that the first-order method is grid converged

on the 129 point mesh. i.e., fltrther grid refinement makes no appreciable reduction in error nor is there

significant increases, just re-distribution. However, the seconcl-order polynomial chaos is clearly not grid

converged on the 129 point grid. There is a substantial reduct.ion in the mean error on the finer 513 point

grid. In terms of the estimates of the standard deviation, the first-order chaos results on both grids are

similar and very close to the SOS_[ method (see Fig. 4.9). The 2 ''_zorder chaos has very small error in the

standard deviation, ahnost all order-of-magnitude smaller than the estimate obtained from 10,000 5Ionte

Carlo simulations.

A further examination of the error convergence versus the order of the PC was conducted. In theory,

exponential reduction rate of the error as the order of the chaos is increased should be observed. In practical

CFD simulations, there are issues that are likely to make such convergence rates unachieval)le although this

does not preclude the use or utility of the polynomial chaos inethod. Figure 4.12 supports this statement

where: on the left, the convergence behavior of the L2 norm shows that in order to achieve the "theoretical"

convergence, more and more information needs to be supplied at the boundary as the order of the chaos

increases (see Table 4.2). This simply means that in order to match the exact solution to a given level of

accuracy, boundary conditions must also be specified consistent with the level of accuracy sought. Thus. to

stay on the exponential convergence curve, higher order chaoses require higher order statistics at the bound-

aries of the computational domain. Note also that finer grids are also required to stay on the exponential

reduction rate curve due to the increased frequency content, inherent in the higher order modal solutions.
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Provided that the PDF of the output uncertainty on the boundary is known, one can determine t,he

required modal values, _, on the boundary by matching moments as was done here. It is not likely that the

PDF will be available for general CFD simulations. Moreover, we will be fortunate to get good estimates of

the mean and variance at the boundaries. In the absence of higher order statistics, one is forced to make

assumptions that degrade the error reduction rate of the method. However, as shown earlier, even relatively

low-order (<3) chaos can produce results superior to the first- and second-moment methods.

To further demonstrate the boundary condition issue, the right of Figure 4.12 shows the error convergence

for a slightly simpler problem, the 1-D heat equation with internal heat generation. The significant difference

between these two problems is the stochastic boundary conditions. For the heat equation, the domain is

finite and the boundary conditions, by problem definition, have no uncertainty. The uncertainty enters

through the thermal conductivity which was treated as a Gaussian random variable with a CoV = 10%.

This problem has a simple exact stochastic solution and since there is no boundary uncertainty, the exact

boundary condition treatment is to set all higher modes to zero. As seen, the exponential convergence rate

is achieved. On the other hand, for the Burgers equation, the effect of not being able or willing to specify

the higher modes exactly results in the "peeling off" of the error from the theoretical curve.

Further impact of the boundary condition specification for the Burgers equation can be seen in Figure 4.13

in which the exact solution is compared with the probability density function of a third-order chaos at z = -2;

the shaded areas highlight their difference. The three boundary conditions correspond to specification of the

mean (BC1), mean and variance (BC2), mean, variance, and skewness (Be3) respectively, i.e., the boundary

condition specifications are increasingly complete. The first boundary condition shows that ignoring the

variance at the boundary results in a much more peaked distribution than should be predicted. This effect

is even more pronounced closer to the boundary on which there is no distribution, just a mean value and

zero variance. Consequently, moving slightly inward results in some but little variance since it's forced to

zero nearby, and hence a large narrow peak. However, as seen in the lower left of the figure, addition of the

variance makes substantial improvement in the prediction although the distribution is Gaussian. Providing

additional intbrmation concerning the boundary skewness is seen to shift the distribution markedly such that

the interior skewness is now well predicted.
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The statistics of the distribution predicted by a 4 th order chaos are compared wit, h the exact solution

in Figure 4.14. \,Vithout symbols on the plots, the distributions are all but indistinguishal-)le. Note that the

standard deviation is a maximum in the vicinity, of :c = -1 where the PDF is nearly Gaussian as indicated

by its skewness near 0 and kurtosis value near 3. The PDF's switch from skewed to the left to skewed to

the right, in each half domain a: C [-3, 0} and :_.:_ {-3.0]. It is. also clear that the departure from Gaussian

is maximal at the boundary.

An estimate of the computational effort associated with this problem is shown in Figure 4.15. The

deterministic, first- and second-order moment methods, and polynomial chaos of orders 1-3 are compared

with the cost of 100 Monte Carlo simulations. Moment methods cost 2-3 t,imes more than a deternfirfistic

solution. The work of polynomial chaos is relatively high, about 20 times the cost, of a deterministic sohu.ion

but there are opportunities to reduce this cost (e.g. loosely-coati)led algorithms, multi-grid, ...).
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/3, Shock Wave Angle _._c_

_'\'_ \ \ \ \_ \ \ " _, Deflection Angle

5. Oblique Shock Waves. Shock waves and expansion fans are fundan]ental building blocks %r in-

viscid compressible flow theory. \'Ve begin by addressing inviscid, supersonic flow over a wedge at Mach

numbers and wedge angles for which an attached, stead5-: oblique shock forms. A sketch of the problem is

shown in Figure 5.1. The output quantity of interest %r this example is the pressure rise across the shock

wave. _. which is strictly a function of the upstream _[act] nmnber. J_[] and the wectge angle 0 (for a fk\ed
' PI '

/). In all cases, we take the ratio of specific heats: V = 1.4.

5.1. Deterministic Problem. For a 1)er%ct gas, the pressure rise across a normal shock wave is given

by the R.ankine-Hugoniot relation

2-,,
(5.1) I)-i2= ] + _(Jl/y - 1)• t)1

where the subscripts'_:l '' and ':2" refer to conditions just ahead of and behind the shock wave respectively.

The pressure rise across an oblique shock can be obtained from the normal shock relation 1-)vreplacing

the Mach number in Eq.(5.1) by the normal component of the upstream Mach numl:)er, AIl,, in this case.

From geometric considerations,

(5.2) flI],, = AJ1 sin I3.

A relationship for the shock wave angle, !!_:can 1)e obtained from the tangential momentum equation (the

so-called d - 0 - 5i relationship). A common form of this relationship is

(5.3) tan 0 = °cot./:_ { M2sin2'3-1 }- 5I'-)(_,,,+ cos 2/3) + 2 "

For a detailed derivation, see e.g. [5]. Note that this relationship uniquely specifies the flow deflection

angle, 0, for a given Mach nmnl:)er ahead of the shock, (denoted generically by AI) and shock wave angle. 3.

However: in practice, one generally knows the _[ach numl:)er and the geometry, 0, (to within a manufacturing

tolerance), thus. one needs to solve Eq.(5.3) for .3. \\-ith some manipulation, this equation can be written

as a cubic polynomial in the variable sin 2 L_. hence three solutions f'c_)r._ exist. %r each {M, 0/ pair. Two of

the solur.ions correspond to physical processes that occur in nature: a strong shock wave and a weak shock

w_a_e although the latter is preferred by nature and is the ol_.e we study here. The third solution is non-

physical. Frequently, one uses a numerical root finding procedure such as the Secant method to iteratively

solve Eq.(5.3) for the value of ,;3 corresponding to the weak solution but here we used the analytic solution

(obtained via Mathematica v4 [46]). This was especially usefi_l fbr computing exact analytic sensitivity

derivatives for this problem. A plot of the .,'3- 0 -/lI relationship is shown on the left. of Figure 5.2 fbr

selected Mach numbers. As can be seen. for each Mach nmnber there is a maximum deflection angle beyond
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which no solutions exist. At Mach 2, the m_imtun deflection is approximately 23 °, .at Mach 5 it is roughly

41 ° .

Once/3 is found, one solves Eq.(5.2) for the normal component of the Mach nmnber and replaces M_ by

Ma,, in Eq.(5.1) to obtain the deterministic values of the pressure rise. Other than the assumptions already

mentioned (i.e., inviscid, perfect gas) which arise in the governing equations, this procedure is exact. The

solution for the pressure rise across an oblique shock is shown on the right of Figure 5.2.

A far more general albeit expensive approach to solving this problem is to use modern CFD techniques.

To that end, we used the two-dimensional CFD code, FLOW.f (formerly ANSERS) supplied by A. Taylor

This code solves the Navier-Stokes equations and subsets including the Euler equations on finite volume

meshes using upwind discretization methods (see [44]). A smnple result of one calculation is shown in Figure

5.3 for which pressure contours over the wedge corresponding to the conditions 2/_I<_= 3 and 0 = 5 ° are

displayed. To compare the CFD calculations with oblique shock relations, we took the pressure behind the

shock to be the cell-averaged value from the last cell on the surface (i.e., right before the exit plane). On 31

x 46 grids, the results of the CFD calculations at all Mach numbers considered are visually indistinguishable

on the pressure rise plot from the exact oblique shock results.

5.2. Stochastic Problem. Two variables, the Mach number, M, and wedge angle, 0, were considered

to be Gaussian random variables, both with a coefficient of variation of 10%. The main focus was on the

geometric uncertainty associated with the wedge angle. The uncertainty analysis methods implemented

were Monte Carlo and the first-order moment method for which the first-order sensitivity derivatives were

computed analytically. For example, to compute the sensitivity derivative _ we used the chain rule,

(5.4) 0p _ 0p 0M_,, 0/3
O0 0_.I],, 0/3 O0"

The first two terms are trivial but the third is essentially impossible by hand. Mathematica version 4 [46]was

used to evaluate 0_"5g analytically, although other approaches, including numerical derivatives could be used.

The results of the sensitivity derivative evaluation are shown in Figure 5.4. Note that the derivative is fairly

linear until 0 approaches the maximum flow deflection angle at, which point, the derivative varies very rapidly.

This is just another example of the highly non-linear nature of fluid mechanics.
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Monte Carlo simulations using both oblique shock relat.ions and CFD were run for mean Mach numbers

{2_] = 2.3.4.5} and mean flow deflect.ion angles {0 = 5 °. 10 °, 15 °, 20 ° }. For each case, 1000 simulations

were performed. Addit.ionally, correlations between the two r_ndom variables were invest.igated. For each

{.,'U. 0} pair, the correlation coefficient., p, was varied from {-1, 1} resulting in 9 x 16 x 1000 = 144.000 2D

CFD simulations and an equal number of oblique shock calculations. The CFD calculations were performed

at ICASE on 8-processors of CORAL. It took approxilnately two overnight runs to complete t.he 144. 000

simulations. The oblique shock relations were run in a matter of minut, es on a 200 MHz pentium PC. In

terms of the statistics of the distribut.ions, both approaches yielded consist.ently similar values. The expected

value of the pressure rise with 95% mean confidence int.ervals and the coefficient, of variation are shown in

Figure 5.5.

Note that the data point corresponding to M = 2, 0 = 20 ° is missing. For a Gaussian distributed

random variable with a mean of 20 ° and standard deviation of :2° (i.e., 10% CoV) the 95_F_ confidence region

:;(}
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TABLE 5. ]

N.,..,,,.l,r,.r of .,',.'/,,.:n/c._f,,,',,,. N/2().2) d,.,,.t ,..,.c _/.,.c,.l,cr th.a..,,0 (,,.,.t of l r)(]o).

0 ° Number of Samples > 0

Exact Values Random Draw

20 500 492

21 309 292

22 159 143

23 67 73

24 23 24

25 6 8

26 1 2

is roughly [16 °, 24°]. Clearly, when randolnly drawing 1000 samples from such a distribution, numerous

smnples will be drawn with values greater than 23 ° (see Table 5.1) which corresponds to the maximum flow

deflection angle for this Mach number hence the M = 2, 0 = 20 ° data point was rejected. To further illustrate

this, Figure 5.6 shows the input histogram with mean angle of 20 ° where numerous samples greater than 23 °

can be seen. The center and right histograms are the pressure output for input conditions M = 2. 0 = 15 °

and M = 5, 0 = 20 °, respectively for which all of the sampled angles are well below 0M,,_ for each Mach

number. In this rather academic exmnple, we chose large variations in the input variables purposely to make

the graphics easier to see, but for one case, this resulted in non-physical sampling. Such is likely to occur

with many random variables that may arise in fluid mechanics applications, for example, thermodynamic

and transport properties are bounded from below by zero whereas a Gaussian distribution has support

on [-oo, co]. One approach to overcoming this problem is to either truncate the distribution or to use

distributions with finite support (such as the Beta distribution) provided that the use of such a distribution

can be justified.

For demonstration purposes, correlations between the upstream Mach number and 0 were considered.
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The result of correlating these \:ariables is shown in Figure 5.T. As expected, when A/ and 0 are positively

co,related, the combined model uncertainty increases since increasing :l! or O independently increases the

uncert.ainty. Likewise, negative correlation reduces the variance, since one tends to off:set the other. Note that

a rather substantial variat.ion with correlation coefficient oc(:m's particularly for the stronger cases (larger

rnean 3! and mean 0). Clearly, when considering multiple random input variables, it, will be imi)o,'tant

t.o have knowledge of the (-orrelation among the variables in order to get reliable output estimates of the

variance.
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6. Prandtl-Meyer Expansion Waves. Expansion waves form another fundamental building block

ibr compressible flow theory. In this case, we consider the flow of a calorically perfect gas across a centered

expansion fan emanating from a sharp convex cornel" as shown in the sketch of Figure 6.1. \hze take the

output quantity of interest to be the pressure drop through the expansion fan which is a flmction of the

upstream Mach number and flow turning angle.

6.1. Deterministic Problem. The solution to this supersonic flow problem was first presented by

Prandtl in 1907 and subsequently by Meyer in 1908 [5]. The basic problem is to determine properties behind

the rearward Mach line given flow properties ahead of the expansion corner. The governing differential

equation for this flow is

dV
(6.1) dO = V/M 2 - 1

where V is the flow velocity and dO is an infinitesimally small expansion angle. Integrating the differential

equation over the entire expansion angle yields,

where the notation A0 implies the total turning angle that the flow experiences and L,(]_I) is the Prandtl-

Meyer function, which for a calorically perfect gas, is

(6.3) u(]ll) = _/_+1 tan- 1 _/__] (2V/2 - 1)- tan -1 v/k12- 1.
V _/-1 V7_-1

Given the upstream Mach number, All, and the flow expansion angle, [A0], the procedure for solving this

problem is:

1. compute _(M1) from Eq.(6.3)

2. compute _(z1h) from Eq.(6.2)

3. compute -/1"I2by soh,ing Eq.(6.3) as a root-finding problem or find ;I2 froln tabulated values

4. Use isentropic relations to compute flow properties in region 2

For exmnple, the pressure decrease, P2/Pl, can be obtained froxn

[_ 7--1 ,_,/-2
i6.4 ) P2= + 2-''2

_..A_
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The second approach that we used t.o solve this problem was the flow analysis code FLO\\;.f described

earlier. Simple h-meshes consisting of 31 x 46 grid points were used for the simulations. Pressure contours

fl'om a Mach 3 simulation over a 5 ° expansion corner are shown in Figure 6.2. For comparisons with the

Prandtl-Meyer res_flt.s, we again took the discrete value of the pressure behind the expansion to be the

cell-averaged value at the last cell on the surface ahead of the exit plane.

6.2. Stochastic Problem. Similar to the oblique shock wave example: we took the upstream Mach

number and the flow expansion angle to be Gaussian random variables with a coefficient of variation of 1()_.

Monte Carlo simulations (1000 per case) and the first-order moment method were implemented using both

analysis methods discussed. The expected value of the pressure decrease shown in Figure 6.3 closely fl_llows

the deterministic solution. On the original 21 x 31 grids used by the CFD codel we found discrepancies

at. the higher Mach numbers and turning angles. Consequently. we refined the grids to 31 x 46 for which

solutions at all {!_I, _} pairs compared closely to the exact solution.

Sensitivity derivatives were computed using filfite-difl'erencing of the exact inviscid Prandtl-Mever solu-

tion. Results for the pressure sensitivity are shown in the right of Figure 6.3. For moderate turns of less

than approximately 10 °. pressure sensitivity increases with increasing Nia.ch number, but at higher turning

angles_ this trend reverses. Since the first-order estimate of t.he standard deviation is directly proportional

a_ this behavior is reflected in the sl:andard deviation of the pressure distributionto the pressure sensitivity _,

(see Figure 6.4). However. the relative uncertainty in terms of the coefficient of variation monotonically

increases with increasing _kiach numbers and turning an_les. Note that quite substantial variation in the

output occurs at the higher {M. 0} pairs.

We implemented the bootstrap estimate of the standard error to compute confidence intervals fbr an\

statistical quantity. The nmthod has the advantage t.hat it is easy and efficient to implement: general in rlte

sense that it is not restricted to a specific distribution, e.g. a C.aussian, and it can be completel3: automated

tbr any estimator. The interested reader is referred to [12] tbr details of the method. In practice, one

takes 25 - 200 bootstrap samples to obtain a standard error estimate. Table 6.1 shows bootstrap standard

error estimates of the mean. standard deviation, and coefficient: of variation for a range of bootstral_ salnple

numbers for the case of Math 5 flow over an expansion cornel' with a mean angle of 20 ° and a coefficient
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of variation of 10%. The 95% confidence intervals shown in Figure 6.5 were obtained from the bootstrap

estimate of the standard error in the coefficient of variation of pressure.

The histogram in Figure 6.6 shows that the random variable p.2//pl is non-Gaussian as evidenced by

the significant tail to the right. Results of the analysis assuming correlation among the {M, 0} pairs are

presented in Figure 6.6. The trends are similar to the oblique shock results in that positively correlated

variables result in the greatest uncertainty. This is intuitive since increasing the expansion angle results in

greater uncertainty as does independently increasing the Mach number.

7. Supersonic Airfoil. Shock-expansion theory has been used extensively to model supersonic flow

over thin airfoils. This exmnple considers steady, two-dimensional adiabatic flow of an inviscid, perfect gas

over the airfoil shape described by its upper and lower surfaces, y,,(z) and _(x), respectively. The airfoil

coordinates are given by

COSIer( 1
(7.1) y,(x) = _ - _)], y,(x) = -y,(x). x E [0, c].
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Number of Standard Error Standard Error Standard Error

Bootstraps in the Mean in G in CoV

100 0.000547105 0.000751298 0.0144571

200 0.000598759 0.000673770 0.0138239

300 0.000557259 0.000678446 0.0137223

400 0.000581007 0.000674247 0.0133587

500 0.000600424 O.000691841 0.0134268
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The shape of the airfoil is shown in Figure 7.1. Visually, the airfoil is displayed five times thicker than it

actually is due to the aspect ratio of the plot. For all calculations, the free-stream Mach number was fL'ced at

three, (2/.I_ = 3). The non-dimensional pressure distribution obtained on a uniform 65 grid point (h. = 0.016)
t

mesh at an angle of attack, ct = 3 ° and a thickness-to-chord ratio, g = 0.05, is shown on the right.

Grid convergence studies were performed prior to generating stochastic solutions. Ten grid levels were

used with the number of points. _z. determined from n = 9i+ 1. i = {1, 2, ..10} The mesh size. h = _'_ -
• , " ' , " " ' c 'n.--1

varies from a maximum value of 0.5 to the minimum of 0.000976563. Figure 7.2 shows the results of this

grid refinement process on Cz, Ca,, and CI/C_,. As can be seen, grid convergence occm's fairly quickly. On the

65 grid point (h _ 0.016) mesh corresponding to the sixth level of refinement (starting from a ver_j coarse 3

grid point, 2 panel airfoil), the solution is converged for all practical purposes.

For the stochastic calculations, the thickness-to-chord ratio was assumed to behave as a Gaussian random

variable with a mean value of _ = 0.05 and a coefficient of variation of 1%. Solutions on a 65 grid point mesh
(:

were generated 1)3' the Monte Carlo method and the frst.- and second-moment me, thods. The sensitivity
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derivatives with respect to L required by the moment methods were con-iput.ed using second-order accurate
c "

finite differences. The upper surface pressure sensitivity deri,,;atives versus :c/c for two different angles of

att, ack (o. = 0 ° and 3 °) are shown in Figure 7.3. Three function evaluations per angle-of attack are required

1)y this procedure. It' one is only int, erested in a single output quantity, sucli as C'_/C.'<z, there is no need to

comput.e the pressure sensit, ivities since the sensit.ivit.x, derivative of the out.put quantity can l:)e der.ermined

directly from t.he differencing procedure. Figure 7.3 shows the Monte Carlo convergence of the expected

vahie of C_/C<_ and 95% mean and single prediction confidence, intervals.

Finally, the performance of the airfoil across a range of angles of attack was studied. The angle-of-

attack was varied from 1° to .5° in increments of 1/4 °. Results fl'om 100 Monte Carlo simulations for each

angle-of-at.tack are compared with results fl'om the first-order moment method in Figure 7.4 where a_:ain

good correspondence between the FOSM confidence interval and t.he single prediction confidence interval is

seen. The enlarged view on the right clearly shows that FOSM slightly underestimates the variance. The

second-order moment method produces results virtually identical to FOSM and were omitted for clarity.



8. Laminar BoundaryLayer Flow. Theboundarylayerequationsfor steady,two-dimensionalin-
compressibleflowwithconstantpropertiescanbewrittenas

(8.1) 0u 0v+N =0

Ou O_L U dU 02u
(8.2) + =0y

subject to the boundary conditions

(8.3)

It is well known that these partial differential equations can be re-cast in terms of a sinfilarity variable as an

ordinary differential equation for which solutions exist for specific freestrealn velocity distributions, U(x).

In 1908, Blasius found a solution to the parallel flow over a flat plate with U(x) a constant (see [45]). Under

these conditions, the governing equations in self-sinfilar form reduce to

(8.4) f'" + f f" = 0

where f = f(_?) only and

(8.5) u(x,y) = U(:c)f'O] )

The boundary conditions transibrm to

where v/U_](z, y) = y 2ua'"

(8.6) f(O) = if(O) = 0 ,f'(oo) = 1

To date, an analytic solution to this equation is not known although series solutions with a finite radius

of convergence are established. Numerically, the problem reduces to finding the value of f"(0) such that

f' _ 1 as 'q _ oc. An asymptotic analysis shows that _7= 10 is a sufficiently large value. Finding the correct

value of f'(O) is a simple root finding problem which, in our calculations, was solved by the Secant method.

The correct value to six significant digits is (see [45])

(8.7) f"(0) = 0.469600. • •

8.1. Deterministic Problem. A relatively fine 5000 grid point mesh distributed on 77C [0, 10] was

used for the numerical solution. Similarity functions and velocity profiles x = 1 meter for three different

freestream Reynolds numbers (Re - u,_) are shown in Figure 8.1.
M J

8.2. Stochastic Problem. The kinematic viscosity, u, was taken as a normally distributed stochastic

input parameter with a coefficient of variation of 2%. The sensitivity derivative required for the FOSM

method can be obtained from

(8.8) au _ ou o,? _ u)? f,,(,l).
Or' 0_10u 21/

The second derivative (for the SOSM method) can be found by further application of the chain rule to be

(8.9) Og-u _ U,1 (3f'('q)+ 'l.f'"('l))
Ou 2 4u 2
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Plots of _l_e derivat.ives, non-dimensionalized by U and t.he mean viscosit.y. 7v. are shown in Figure 8.2.

For this problem: t.he contribut.ion of the second derivat, ive terms t,o the estimat, es of t,he mean and variance

are negligibly small and hence their distribut, ions are indist, inguishable as seen on the right, of Figure 8.2

where t,he Mont, e Carlo result, s after 1000 simulations are also shown for comparison.

Mean velocity profiles at, a: = 1 meter and Re = 10. 000 ol)t, ained fi'om 1000 Monte Carlo realizations

are shown in Figure 8.3. An enlarged view is display,:ed on t,he right so that the single predict, ion confidence

int, ervals can be readily observed. The FOSM and SOSM confidence intervals coincide wit, h the _Xionte

Carlo confidence int, ervals and were omirted in the plot for clarify. It is worth noting that, the 95% mean

confidence int, ervals are smaller by a factor of' roughly 30 (_ V 1_0--0-0) and should be used for giviitg the l_est

estimate of the mean. However. since n_oment-based met.hod,_: only estimat, e the standard deviat, ion of the

parent, l:_opulation, a more direct comparison t,o Monte Carlo i:s afforded 1:6; the single prediction confidence

intervals.
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The convergence of the standard deviation predicted by the Monte Carlo method versus the number

of simulations is shown in Figure 8.4. The FOSM and SOSM estimates (which lay on top of one another)

are also shown. Note the relatively slow convergence of the Monte Carlo method as can be seen by the

low frequency meandering of the velocity standard deviation. If one wants very accurate estimates of the

standard deviation, this slow convergence and hence high cost will be unacceptable. However, if one only

needs a moderately accurate estimate of the mean and is willing to accept a fairly rough estimate of the

standard deviation, then relatively few simulations may yield acceptable results.

9. Summary. This paper reviews deterministic and probabilistic uncertainty analysis methods applied

to fundamental problems in fluid mechanics. Sources of uncertainty and a discussion of selected methods

for random variable models are presented. Applications presented include a linear convection problem with

a source term, a non-linear Burgers equation, supersonic flow over wedges, expansion corners, and a thin



supersonicairfoilaswellasincompressibleboundarylayerflow.
Themethodsdiscussedandimplementedare:IntervalAnalysis,Propagationof errorusingsensitivity

derivatives,MonteCarlosimulation,MomentmethodsandPolynonfialChaos.Althougheasyto imple-
ment,intervalanalysisoftenresultsin maximalerrorboundsthat arequitelarge.Thebasicprocedurefor
implementingMonteCarlois presentednext. Althoughcomputationallyintensive,MonteCarlosolutions
arefrequentlyusedasa baselinefor comparisonwithothermethodssincetheyareknownto convergeto
theexactstochasticsolutionin thelimit of infinitesamplesize.First-andsecond-ordermomentmethods.
popularbecauseof therelativelylowcostandutility in a designem:ironmentarecovered.Thesemethods
generallyyieldgoodapproximationswhentheoutputprobabilitydensityfunctionisaGaussiandistribution
or relativelycloseto Gaussian.Next.Hermitepolynonfialchaosisdescribedforsolvingstochasticproblems
involvingrandomvariables.Themostsophisticatedofthemethodsreviewed,polynomialchaosisbasedona
spectralrepresentationoftheuncertaintywhichissubsequentlydecomposedintodeterministicandrandom
components.Often,highlyaccurateresultsareobtainablefromthisapproachat lowercostthanXionte
Carlosimulations.

All methodswereimplementedfora non-linearformof thegeneralizedBurgersequationforwhichwe
obtainedanexactstochasticsolution.Tomimicthebehaviorof CFDcodes,weusedsecondorderspatial
differencingandix-nplement,edNewton'smethodto soh,ethenon-linearproblem.In allcases,approximately
teniterationswererequiredto achievemachineprecisionresults.Intervalanalysiserrorboundswereunac-
ceptablylarge,evenwhenperformedasasinglefunctionevaluationout,sidetheiterationloop.Bothfirst-
andsecond-ordermomentmethodsproducedreasonableestimatesofthemeanandvariancebut thesecond
orderestimatesweresubstantiallybetter.Polynomialchaossolutionsofvariousordersweregenerated.The
first-orderchaossolutionswerecomparableto thesecondmomentsolutions.Thethird andfourth-order
solutionswereveryaccurateandmatchedtheexactPDFof thesolutioncloselyat all point,sin thedomain.
\\:ealsoshowedthatthetreatmentofboundaryconditionsandthequalityof thegridhasanimpactonthe

error convergence as a function of the order of the chaos.

Oblique shocks and expansions were considered in which the flow turning angle and the input _iach

number were considered to be random variables. We used the 2 - D CFD (:ode FLOW.f as well as shock

expansion theory to simulate these flows by the Monte Carlo and first-order moment methods. Parametric

results showing the impact of correlation among the variables demonstrate the need to have knowledge about.

the relationship among input random variables. Supersonic flow over a thin cosine shaped airfoil was studied

at a variety of angles-of-attack. The thickness of the airfoil is treated as a random variable and the impact

of this uncertainty on the lift-to-drag curve is examined.

Finally, we studied incompressible, steady flow over a flat plate, the celebrated Blasius flow. in which the

kinematic viscosity was uncertain. The equations were solved in self-similar variables for which the random

variable gets folded into the similarity variable. Both moment methods and Monte Carlo simulations were

performed. For this example, little difference was observed between the first- and second-moment methods.
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